金沢工業大学 学習支援計画書
E230-01
日本語(Japanese)
||
英語(English)
学習支援計画書(シラバス) 検索システム
印刷
専門教育課程 ロボティクス学科
授業科目区分
科目名
単位数
科目コード
開講時期
履修方法
専門教育課程
専門科目
専門
ロボットプログラミングⅡ
Robot Programming II
2
E230-01
2024
年度
6期(後学期)
修学規程第4条を参照
担当教員名
出村 公成
*印は、実務経験のある教員を示しています。
授業科目の学習・教育目標
キーワード
学習・教育目標
1.ロボットプログラミング 2.AI 3.生活支援ロボット 4.ROS2 5.Python
近年,AI(人工知能)が急速に発展し,人工知能を搭載したAIロボットが開発されている.本 講義ではAIロボットの基礎理論とそのプログラミング技法を学び,理論と実践の融合を目指 す.具体的には,ナビゲーション,ロボットビジョン,音声認識・合成,プランニング,マ ニピュレーションなどAIロボットに必要不可欠な基礎事項を学ぶ.
授業の概要および学習上の助言
知能ロボットはソフトウェアも大規模になるためミドルウェアとしてROS(Robot Operating System)はデファクトスタンダー ドとして使われている.本講義ではROSの最新版であるROS2を使い,Python言語でプログラムを開発する.学習並びに演習す る具体的な項目は次のとおりである.また,昨年度までは開発環境のインストール作業が複雑で非常に難しかったが,今年度 から,Windows環境で本授業用のDockerイメージを用いる.Dockerイメージをダウンロードするだけで,簡単に演習に取り組 めるようになり,効率的に実習が可能である. 項目 1.開発環境のインストール 2.ROS2の基礎 3.ナビゲーション 4.ロボットビジョン 5.音声認識・合成 6.プランニング 7.マニピュレーション 8.プログラム演習
教科書および参考書・リザーブドブック
教科書:ROS2とPythonで作って学ぶ AIロボット入門[講談社] 参考書:指定なし リザーブドブック:指定なし
履修に必要な予備知識や技能
Pythonの基礎的なプログラミング能力
学生が達成すべき行動目標
No.
学科教育目標
(記号表記)
①
K
教科書や資料の理論を理解できる。
②
K
教科書や資料の例程度のプログラムを理解し、プログラムを作成できる。
③
K
簡単なロボットプログラムを作成できる。
④
⑤
⑥
達成度評価
評価方法
試験
クイズ
小テスト
レポート
成果発表
(口頭・実技)
作品
ポートフォリオ
その他
合計
総合評価割合
30
20
50
0
0
0
0
100
指標と評価割合
総合評価割合
30
20
50
0
0
0
0
100
総合力指標
知識を取り込む力
30
20
0
0
0
0
0
50
思考・推論・創造する力
0
0
40
0
0
0
0
40
コラボレーションと
リーダーシップ
0
0
0
0
0
0
0
0
発表・表現・伝達する力
0
0
10
0
0
0
0
10
学習に取組む姿勢・意欲
0
0
0
0
0
0
0
0
※総合力指標で示す数値内訳、授業運営上のおおよその目安を示したものです。
評価の要点
評価方法
行動目標
評価の実施方法と注意点
試験
①
試験により基礎知識の理解度を評価する.
②
レ
③
④
⑤
⑥
クイズ
小テスト
①
②
③
④
⑤
⑥
レポート
①
シミュレータ上の次のロボットに、知能ロボットの基礎をプログラミングする。 1.ナビゲーション(デッドレコニング,自己位置推定等) 2.音声認識・合成 3.プランニング 4.ロボットビジョン
②
レ
③
レ
④
⑤
⑥
成果発表
(口頭・実技)
①
②
③
④
⑤
⑥
作品
①
②
③
④
⑤
⑥
ポートフォリオ
①
②
③
④
⑤
⑥
その他
①
②
③
④
⑤
⑥
具体的な達成の目安
理想的な達成レベルの目安
標準的な達成レベルの目安
AIロボット工学において基本的な理論を全て理解し、ロボット シミュレータ上のロボットにその知識を用い、効率的なプログ ラムを作成できる.
AIロボット工学において基本的な理論をいくつか理解し、ロボ ットシミュレータ上のロボットにその知識を用い動作可能なプ ログラムを作成できる.
CLIP学習プロセスについて
一般に、授業あるいは課外での学習では:「知識などを取り込む」→「知識などをいろいろな角度から、場合によってはチーム活動として、考え、推論し、創造する」→「修得した内容を表現、発表、伝達する」→「総合的に評価を受ける、GoodWork!」:のようなプロセス(一部あるいは全体)を繰り返し行いながら、応用力のある知識やスキルを身につけていくことが重要です。このような学習プロセスを大事に行動してください。
※学習課題の時間欄には、指定された学習課題に要する標準的な時間を記載してあります。日々の自学自習時間全体としては、各授業に応じた時間(例えば2単位科目の場合、予習2時間・復習2時間/週)を取るよう努めてください。詳しくは教員の指導に従って下さい。
授業明細
回数
学習内容
授業の運営方法
学習課題 予習・復習
時間:分※
1週
オリエンテーション:授業内容の説明 第1章 AIロボットをつくろう!
座学,演習
復習:講義内容 予習:次回までに参考資料を元に 開発環境をインストールする
200
2週
第2章:はじめてのROS2(2.1〜2.4節)
座学,演習
復習:開発環境のインストールが 授業中終わらない場合は、次週ま でに済ませておくこと。
200
3週
第2章:はじめてのROS2(2.5〜2.6節)
座学,演習
復習:講義内容
300
4週
第2章:はじめてのROS2(2.7節)
座学,演習
復習:講義内容 レポート1
200
5週
第4章:ナビゲーション(1/2)
座学,演習
復習:講義内容
200
6週
第4章:ナビゲーション(2/2)
座学,演習
復習:講義内容
200
7週
第3章:音声認識・合成
座学,演習
復習:講義内容
200
8週
試験と前半振り返り
試験
復習:講義内容 レポート2
200
9週
外部講師による講演
座学
レポート3
10週
第5章:ビジョン(1/2)
座学,演習
復習:講義内容
200
11週
第5章:ビジョン(2/2)
座学,演習
復習:講義内容
200
12週
第6章:マニピュレーション1
座学,演習
復習:授業の内容
300
13週
第6章:マニピュレーション2
座学,演習
復習:授業の内容 レポート4
300
14週
第7章:プランニング
座学,演習
復習:授業の内容
300
15週
期末試験 授業の振り返り
座学,演習
復習:授業の内容
300
一般に、授業あるいは課外での学習では:「知識などを取り込む」→「知識などをいろいろな角度から、場合によってはチーム活動として、考え、推論し、創造する」→「修得した内容を表現、発表、伝達する」→「総合的に評価を受ける、GoodWork!」:のようなプロセス(一部あるいは全体)を繰り返し行いながら、応用力のある知識やスキルを身につけていくことが重要です。このような学習プロセスを大事に行動してください。
※学習課題の時間欄には、指定された学習課題に要する標準的な時間を記載してあります。日々の自学自習時間全体としては、各授業に応じた時間(例えば2単位科目の場合、予習2時間・復習2時間/週)を取るよう努めてください。詳しくは教員の指導に従って下さい。